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Abstract The regulated and regulatory components that interrelate nuclear structure and function must be
experimentally established. A formidable challenge is to de®ne further the control of transcription factor targeting to
acceptor sites associated with the nuclear matrix. It will be important to determine whether acceptor proteins are
associated with a pre-existing core-®lament structural lattice or whether a compositely organized scaffold of regulatory
factors is dynamically assembled. An inclusive model for all steps in the targeting of proteins to subnuclear sites cannot
yet be proposed. However, this model must account for the apparent diversity of intranuclear targeting signals. It is also
important to assess the extent to which regulatory discrimination is mediated by subnuclear domain-speci®c traf®cking
signals. Furthermore, the checkpoints that monitor subnuclear distribution of regulatory factors and the sorting steps that
ensure both structural and functional ®delity of nuclear domains in which replication and expression of genes occur
must be biochemically and mechanistically de®ned. There is emerging recognition that placement of regulatory
components of gene expression must be temporally and spatially coordinated to facilitate biological control. The
consequences of breaches in nuclear structure±function relationships are observed in an expanding series of diseases
that include cancer [Weis et al., 1994; Rogaia et al., 1997; Yano et al., 1997; Rowley, 1998; Zeng et al., 1998; McNeil
et al., 1999; Tao and Levine, 1999a] and neurological disorders [Skinner et al., 1997]. As the repertoire of architecture-
associated regulatory factors and cofactors expands, workers in the ®eld are becoming increasingly con®dent that
nuclear organization contributes signi®cantly to control of transcription. To gain increased appreciation for the
complexities of subnuclear organization and gene regulation, we must continue to characterize mechanisms that direct
regulatory proteins to speci®c transcription sites within the nucleus so that these proteins are in the right place at the right
time. J. Cell. Biochem. Suppl. 35: 84±92, 2000. ß 2001 Wiley-Liss, Inc.
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Gene Expression Within the Three-Dimensional
Context of Nuclear Architecture

It is becoming increasingly evident that
control of gene expression must be understood
within the three-dimensional context of nuclear
architecture. During the past several years

there have been signi®cant advances in identi-
®cation and characterization of promoter ele-
ments and cognate regulatory factors that
mediate the activation and suppression of genes
in response to a broad spectrum of physiological
signals. However, it is necessary to mechan-
istically account for the integration of regula-
tory information and the achievement of
threshold concentrations for protein±DNA
and protein±protein interactions that are
responsible for ®delity of gene expression.

While the mechanisms that govern the sub-
nuclear organization of nucleic acids and reg-
ulatory proteins remain to be established, there
is growing appreciation that the regulatory
machinery for replication and transcription is
organized in subnuclear domains that can be
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identi®ed by biochemical, molecular, genetic,
and in situ approaches.

Nuclear Microenvironments: A Structural and
Functional Basis for Subnuclear

Compartmentalization of Regulatory Machinery

From an historical perspective there has
traditionally been a dichotomy between the
pursuit of structural and functional properties
of the cell nucleus. For the most part, biochem-
ical parameters of replication and transcription
have been studied independently from assign-
ment of activities to components of nuclear
architecture. Yet paradoxically, from around
the turn of the last century it was recognized
that there are microenvironments within the
nucleus where regulatory macromolecules are
compartmentalized in subnuclear domains.
Chromosomes and the nucleolus provided the
initial paradigms for organization of regulatory
machinery within the nucleus, and during the
last several decades, linkages have been estab-
lished between subtleties of chromosomal anat-
omy and replication as well as gene expression.
Regions of the nucleolus are understood in
relation to ribosomal gene expression. The
organization of chromosomes and chromatin
are well accepted as re¯ections of functional
properties that support competency for tran-
scription and the extent to which genes are
transcribed.

However, it is only recently that there is an
appreciation for the broad-based organization of
regulatory macromolecules within discrete
nuclear domains [reviewed in Lamond and
Earnshaw, 1998; Leonhardt et al., 1998; Ma
et al., 1998, 2000; Wei et al., 1998; Zeng et al.,
1998; Cook, 1999; Kimura et al., 1999; Misteli
and Spector, 1999; Smith et al., 1999; Stommel
et al., 1999; Verschure et al., 1999; Misteli, 2000;
Scully and Livingston, 2000; Wu et al., 2000;
Zhao et al., 2000; Salomoni et al., 2001].
Examples of intranuclear compartmentaliza-
tion now include but by no means are restricted
to SC35 RNA processing sites, PML bodies, the
structural and regulatory components of
nuclear pores that mediate nuclear±cytoplas-
mic exchange [Moir et al., 2000], coiled (Cajal)
bodies, replication foci as well as de®ned sites
where steroid hormone receptors and transcrip-
tion factors reside [Glass and Rosenfeld, 2000;
Leonhardt et al., 2000; McNally et al., 2000].
The integrity of these subnuclear microenvir-
onments is indicated by structural and

functional discrimination between each archi-
tecturally de®ned domain. Corroboration of
structural and functional integrity is provided
by modi®cations in the composition, organiza-
tion, and intranuclear distribution in relation to
activity [Hirose and Manley, 2000; Lemon and
Tjian, 2000].

By the combined application of molecular,
biochemical, genetic, and high resolution in situ
analysis that permit the identi®cation of nucleic
acids and regulatory proteins in nuclei of intact
cells, the intranuclear organization of nucleic
acids and regulatory proteins is being further
de®ned. We are going beyond mapping regions
of the nucleus that are dedicated to replication
and gene expression. We are gaining insight
into interrelationships between the subnuclear
organization of the regulatory and transcrip-
tional machinery with the dynamic assembly
and activity of macromolecular complexes that
are required for biological control during devel-
opment, differentiation, maintenance of cell
and tissue speci®city, homeostatic control, and
tissue remodeling. Equally important, it is
becoming evident that the onset and progres-
sion of cancer and neurological disorders are
associated with and potentially functionally
coupled with perturbations in the subnuclear
organization of genes and regulatory proteins
that relate to aberrant gene replication, repair,
and transcription.

Traf®cking to Subnuclear Destinations

The subnuclear organization of nucleic acids
and regulatory proteins in discrete sites that
support replication, transcription, processing of
gene transcripts, mitotic apparatus assembly
and activity, chromosome condensation and
decondensation as well as nuclear-cytoplasmic
exchange of regulatory micromolecules necessi-
tates a mechanistic explanation for linkages of
function with components of nuclear architec-
ture. There is growing evidence that the
organization of regulatory complexes within
the nucleus is a multistep process. The inter-
relationships between nuclear morphology and
the structural as well as enzymatic components
of replication and gene expression are providing
a basis for the assembly and physiologically
responsive activity of regulatory complexes. For
many years, it has been acknowledged that the
enzymology for oxidative phosphorylation is
architecturally organized in the mitochondria.
An analogous structure±function paradigm

Subnuclear Trafficking of Regulatory Proteins 85



may be operative within the nucleus for the
stringent control of nuclear regulatory events.

Necessarily, there is a requirement for
mechanisms to direct regulatory proteins and/
or nucleic acids to subnuclear sites. Here,
several regulatory proteins, both transcription
and replication factors, have been functionally
dissected to reveal discrete sequences that
accommodate intranuclear traf®cking. The
hematopoietic and bone-speci®c Runx/AML/
CBFA transcription factors provide a viable
paradigm for identi®cation and characteriza-
tion of speci®c sequences that direct transcrip-
tion factors to subnuclear domains [Merriman
et al., 1995; Banerjee et al., 1997; Zeng et al.,
1997, 1998; Chen et al., 1998; Javed et al., 1999,
2000]. A 31 amino acid sequence has been
identi®ed that is necessary and suf®cient to
direct Runx/AML/CBF proteins to sites within
the nucleus that support transcriptional regu-
lation [Zeng et al., 1997, 1998; Javed et al., 1999]
or suppression [Javed et al., 2000]. Speci®city of
the Runx intranuclear traf®cking signal is
re¯ected by the unique targeting sequence
[Zeng et al., 1997], the X-ray crystal structure
[Tang et al., 1999] and the ability to discrimi-
nate sites within the nucleus where Runx/
AML/CBF proteins reside from sites where
other regulatory proteins (e.g. glucocorticoid
receptor [van Steensel et al., 1995; Htun et al.,
1996; Tang et al., 1998], estrogen receptor (ER)
[Stenoien et al., 2000, 2001], YY1 [Guo et al.,
1995; McNeil et al., 1998], PIT1 [Stenoien et al.,
1998], androgen receptor [van Steensel et al.,
1995] and PTHRP transcription factors
[Nguyen and Karaplis, 1998], nucleolar pro-
teins [Guo et al., 1995], replication/repair
factors [Wei et al., 1998]) are located. However,
a comprehensive understanding of intranuclear
traf®cking mechanisms requires de®ning
subtleties of subnuclear foci assembly, activity,
and turnover. It is reasonable to accept that
intranuclear traf®cking involves multiple steps
that include nuclear import and directing
regulatory proteins to de®ned foci within the
nucleus. The challenges are now to determine
whether regulatory proteins are directed to
scaffold-associated acceptor proteins or if intra-
nuclear traf®cking mechanisms specify macro-
molecular interactions that are associated with
the assembly of multicomponent regulatory
complexes that form a structural and functional
scaffold to support both nuclear morphology as
well as replication and gene expression. While

the components of mechanisms that direct
regulatory factors to subnuclear sites remain
to be comprehensively characterized, even
skeptics have dif®culty in accounting for the
subnuclear compartmentalization of regulatory
machinery by diffusion alone. The intranuclear
traf®cking mechanisms that are emerging
provide a basis for obtaining threshold interac-
tions of factors involved with replication and
transcription that are present at modest levels
within the nucleus. However, it would be
arbitrary and unrealistic to assume that a
single mode of regulatory factor traf®cking is
operative within the nucleus or that intra-
nuclear traf®cking is required to direct all
regulatory proteins to regions within the
nucleus where they function. The temporal
and spatial organization of the replication and
transcriptional machinery is an in vivo phe-
nomenon that must be reckoned with.

Nuclear Architecture Facilitates Integration of
Regulatory Signals

We are gaining insight into the involvement
of nuclear architecture in the integration of
regulatory signals that control gene expression
by mediating crosstalk between components of
physiological signaling pathways. Mechanisms
modulating chromatin remodeling require
higher order nuclear structure and illustrate
the requirement to direct regulatory proteins to
discrete intranuclear sites [Stein et al., 1998;
Jones and Kadonaga, 2000]. The human SWI/
SNF and mouse BAF complexes have been
shown to be punctately distributed within the
nucleus and associated with the nuclear matrix
[Reyes et al., 1997; Zhao et al., 1998]. Functional
implications are provided by the observation
that the BAF complexes are only associated
with the nuclear matrix after mitogenic stimu-
lation of T lymphocytes when gene controlling
competency for proliferation and cell cycle
progression are activated [Zhao et al., 1998].
In resting cells, the BAF complex is primarily
present in the soluble nuclear fraction. How-
ever, immediately after the induction of prolif-
eration, the BAF complex is principally found
tightly associated with the nuclear matrix
fraction [Zhao et al., 1998]. The speci®c para-
meters of chromatin remodeling that are linked
to nuclear matrix binding of BAF as well as the
cause and/or effect relationship between BAF
activity and parameters of nuclear organization
will unquestionably be informative.
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Further insight into linkages between
nuclear architecture, cytoarchitecture, and the
regulation of chromatin structure is provided by
reports that actin-related proteins are compo-
nents of chromatin remodeling complexes
[Cairns et al., 1998; Papoulas et al., 1998;
Peterson et al., 1998; Zhao et al., 1998]. It has
been suggested that these actin-related and
actin-binding proteins may provide a basis for
interactions between chromatin remodeling
complexes and cytoskeletal structures invol-
ving actin. This suggestion is further supported
by observations that both human SWI/SNF
complexes and drosophila BRM complexes not
only contain an actin-related protein (BAF53 in
human cells and BAP55 in drosophila) but also
actin [Papoulas et al., 1998; Zhao et al., 1998].
Furthermore, regions of BAF that contact
myosin, proliferin, and other actin-binding
proteins are similar to actin [Zhao et al., 1998].
The possibility can therefore be considered that
such interactions are important for SWI/SNF
function and are contributing to chromatin
organization and/or remodeling. It will be
important to de®ne the mechanisms that con-
trol the recruitment and assembly of chromatin
remodeling factors at subnuclear sites where
the packaging of genomic DNA is modi®ed to
render speci®c sequences competent for inter-
actions with transcriptional activators and
suppressors.

Compromised Intranuclear Traf®cking is
Functionally Linked to Aberrant Subnuclear
Organization of Regulatory Complexes and

Compromised Gene Expression in Leukemias

Interrelationships of nuclear structure with
gene expression are illustrated by the modi®ed
subnuclear organization of genes and regula-
tory factors in cancer (Fig. 1). Transformed and
tumor cells exhibit striking alterations in
nuclear morphology as well as in the represen-
tation and intranuclear distribution of nucleic
acids and regulatory factors. In both leukemias
and solid tumors there are modi®cations in
components of nuclear architecture that are
involved in control of gene expression. Exam-
ples include mutations of the AML [Miyoshi
et al., 1991; Levanon et al., 1994; Nuchprayoon
et al., 1994; Takahashi et al., 1995; Meyers et al.,
1996; Rowley, 1998; McNeil et al., 1999], ALL
[Rogaia et al., 1997; Sobulo et al., 1997; Yano
et al., 1997] and PML [Dyck et al., 1994; Weis
et al., 1994] loci in leukemias that accompany

changes in gene expression and the subnuclear
organization of encoded transcription factors.
In colon tumor cells, modi®cations in the sub-
nuclear distribution of the APC factor is
observed [Joslyn et al., 1993]. These factors
are associated with nuclear architecture and
the alterations in relationships to nuclear
architecture appear to be related to changes in
gene control. Identi®cation of nuclear import
signals in transcription factors and the recent
characterization of intranuclear targeting sig-
nals that direct regulatory proteins to sub-
nuclear domains that support transcription
reinforce linkages between nuclear structure
and aberrant transcriptional control. These
observations provide an opportunity to develop
high resolution in situ immuno¯uorescence
analysis to diagnose and stage tumors as well
as to monitor remission, relapse, and effective-
ness of treatment. There is a potential for
developing therapeutics that are directed to
subnuclear sites that support speci®c compo-
nents of gene expression.

Alterations in nuclear organization are the
hallmarks of leukemic cells. The gene locus
encoding the Runx transcription factor that is
nuclear matrix associated and is frequently the
target of reciprocal chromosomal translocations
in human leukemia. Replacement of the chro-
mosome 21-encoded intranuclear traf®cking
signal by a targeting signal from chromosome
8 redirects the t(8;21) translocation±fusion
protein to unique subnuclear sites [McNeil
et al., 1999]. Thus, intranuclear targeting of
the Runx/AML transcription factor may be
abrogated because of gene rearrangements in
leukemic cells. Fidelity of transcriptional con-
trol may involve localization of gene regulatory
proteins to the correct subnuclear region. Such
an interpretation is consistent with ®ndings
[Meyers et al., 1996] that the AML/ETO t(8;21)
fusion protein suppresses transcription while
the chromosome 21 encoded AML protein is a
transcriptional activator.

PML bodies are another example of nuclear
structures that are associated with the nuclear
matrix and modi®ed in leukemic cells [Dyck
et al., 1994; McNeil et al., 2000]. In normal cells,
the PML protein resides in discrete PML bodies.
However, in promyelocytic leukemic cells the
PML protein is genetically rearranged and
dispersed throughout the nucleus [Dyck et al.,
1994; Weis et al., 1994]. A further example of
chromosomal translocations involving a locus
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encoding a nuclear matrix-associated transcrip-
tion factor occurs in Acute Lymphocytic Leuke-
mia (ALL/MLL). Recently, a translocation has
been described in which the ALL/MLL protein
is fused with a histone acetyltransferase. This
chimeric protein may promote leukemia by
modifying histone acetylation of speci®c geno-
mic regions. Consequential modi®cations in the
intranuclear distribution of factors encoded by
the rearranged ALL locus occur [Rogaia et al.,
1997; Sobulo et al., 1997; Yano et al., 1997],
although the chimeric transcription factors
remain nuclear matrix associated [Gordon
et al., 2000]. Hence, these results suggest that
perturbations in subnuclear location of regula-
tory proteins may be related to modi®cations in

gene expression that are linked to leukemias.
Additionally, tumor-associated modi®cations
have been observed in nuclear domains that
support the processing of transcripts, the intra-
nuclear organization of Rb and DNA replica-
tion/repair foci, and the nucleocytoplasmic
shuttling of p53 that has been functionally
linked to association of Mdm2 with the nucleo-
lus [Freedman and Levine, 1998; Tao and
Levine, 1999a, 1999b].

Prospects for Insight Into Directing Transcription
Factors to the Right Place at the Right Time

Within the Nucleus

It would be naive to anticipate a single target
for tumor-related alterations in the organiza-

Fig. 1. Targeting of gene regulatory factors and stable
compartmentalization at distinct foci within the nucleus
requires multiple traf®cking steps, including nuclear import
and export, subnuclear targeting to speci®c sites, and DNA
binding-dependent association of transcription factors with
cognate genes. Additional regulation is required for the
assembly and composition of regulatory complexes at sub-
nuclear sites to accommodate physiological control of the
machinery for gene expression. Aberrations in nuclear
morphology and subnuclear organization of domains involved
in gene expression and DNA replication are frequently

modi®ed during tumorigenesis. The center of the ®gure depicts
the nucleus (gray sphere) with multiple functionally distinct
subnuclear domains (colored spheres) and other pertinent
nuclear features (e.g., chromatin, nucleoli, and nuclear pores).
The frames in the corners indicate characteristic modi®cations
in subnuclear organization observed in tumor cells, including
PML foci (left bottom), nucleolus (left top), subnuclear
targeting (AML versus AML/ETO) as well as nuclear import
and export. Other tumor-linked modi®cations include altera-
tions in subnuclear targeting of RNA processing factors and
SWI/SNF chromatin remodeling complexes (not indicated).
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tion of genes, transcripts, and regulatory
machinery. Rather, the mechanisms that med-
iate each component of gene regulation in
relation to nuclear structure±function relation-
ships must be experimentally de®ned. There is
growing recognition that placement of regula-
tory components of gene expression must be
temporally and spatially coordinated to opti-
mally support biological control. The conse-
quences of breaches in nuclear structure±
function interrelationships that have been ob-
served in an extensive series of tumors provide
options for high resolution diagnoses and tar-
geted therapies.

Therefore, one fundamental question is the
mechanism by which this compartmentaliza-
tion of regulatory factors is established within
the nucleus. This subnuclear organization could
be maintained by an underlying macromolecu-
lar framework referred to as the nuclear matrix
[Berezney and Jeon, 1995; Penman, 1995;
Berezney and Wei, 1998]. However, one cannot
dismiss the possibility that nuclear compart-
mentalization is activity driven [Misteli, 2000;
Pederson, 2000].

The nuclear matrix can be visualized by
embedment-free electron microscopy as an
anastomosing network of ®laments and globu-
lar structures [Penman, 1995]. This internal
nuclear matrix is surrounded by the lamina/
pore complex which appears to be connected to
the cytoskeletal intermediate ®laments. The
entire cellular architecture observed following
biochemical extraction is referred to as the
nuclear matrix±intermediate ®lament scaffold
(NM±IF). Several outstanding reviews have
discussed the relationship of this NM±IF
structure to the in vivo organization and acti-
vities of the nucleus [Berezney and Jeon, 1995;
Penman, 1995; Berezney and Wei, 1998; Mis-
teli, 2000; Pederson, 2000]. Independent of
ultrastructural de®nitions of the nucleus,
immuno¯uorescence microscopy studies with
nuclear matrix preparations have provided
novel insights into subnuclear organization.

Consistent with a principal role for the
nuclear matrix in the organization of regulatory
complexes within the nucleus is the representa-
tion of proteins involved in gene expression or
DNA replication, chromatin modifying en-
zymes, and RNA processing factors [Ciejek
et al., 1983; Davie and Chadee, 1998; Wei
et al., 1998; Zeng et al., 1998; Kimura et al.,
1999; Javed et al., 2000]. The localization of

these nuclear matrix-associated proteins to
large specialized subnuclear domains further
supports the architectural placement of regula-
tory macromolecules. These domains can be
visualized by immuno¯uorescence microscopy
in intact cells and in NM±IF preparations.
Recent results have directly shown that active
transcription and DNA replication occur at
numerous spatially distinct foci that are also
associated with the NM±IF [Wei et al., 1998,
1999]. Thus, the evidence for speci®c regulatory
mechanisms that mediate spatial distribution
of proteins within the nucleus is providing a
basis for further pursuit of architecture involve-
ment in transcriptional control for support of
biological regulation and aberrations in cancer.

It is unrealistic to propose a universal me-
chanism for the subnuclear organization and
traf®cking of regulatory proteins. However,
there is emerging support for both repair/
replication, and transcription factors serving
as a scaffold for interactions with regulatory
proteins that control the assembly of multi-
partite complexes. The Runx/AML transcrip-
tion factor provides an architectural scaffold for
protein±DNA and protein±protein interactions
that mediate activation, suppression, and,
chromatin remodeling as well as the signals
for nuclear import and intranuclear traf®cking
to foci within the nucleus where control of
transcription resides [Javed et al., 2000]. The
composite organization of foci for replication
and repair appears to occur in an analogous
manner. Both repair/replication and transcrip-
tion domains exhibit altered composition and
subnuclear distribution in tumor cells re¯ecting
a reorganization of intranuclear regulatory
machinery that is structurally and functionally
related to compromised physiological control
and tumorigenesis.
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